py-xl-sindy documentation
The python Xl-sindy library provides function in order to run Sparse Identification of Non linear DYnamics through lagrangian dynamics.
This documentation goes through each module and function of library.
For a better understanding of the whole framework it is recommanded to read the exemple file provided with the library
Package content :
- xlsindy.catalog module
CatalogCategoryCatalogRepartitionCatalogRepartition.create_solution_vector()CatalogRepartition.expand_catalog()CatalogRepartition.label()CatalogRepartition.reunite_solution_by_type()CatalogRepartition.separate_by_mask()CatalogRepartition.separate_solution_by_type()CatalogRepartition.seperate_by_type()CatalogRepartition.starting_index_by_type()
- xlsindy.symbolic_util module
- xlsindy.dynamics_modeling module
- xlsindy.euler_lagrange module
- xlsindy.optimization module
activated_catalog()amputate_experiment_matrix()bipartite_link()condition_value()covariance_vector()hard_threshold_sparse_regression()hard_threshold_sparse_regression_old()lasso_regression()lasso_regression_old()lasso_regression_rapids()normalize_experiment_matrix()optimal_sampling()populate_solution()proximal_gradient_descent()soft_threshold()sparse_tradeoff_score()unnormalize_experiment()
- xlsindy.render module
- xlsindy.simulation module
- xlsindy.result_formatting module
- xlsindy.utils module
- xlsindy.sindy_utils module
Base catalog content :